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The paper describes the application of SOMs (Self-Organizing Maps) and SVR (Support Vector Regression)
to pattern recognition in GC–MS (gas chromatography–mass spectrometry). The data are applied to two
groups of apples, one which is a control and one which has been inoculated with Penicillium expansum
and which becomes spoiled over the 10-day period of the experiment. GC–MS of SPME (solid phase
as chromatography–mass spectrometry
ood spoilage
olatile organic compounds
upport Vector Regression
elf-Organizing Maps
attern recognition

microextraction) samples of volatiles from these apples were recorded, on replicate samples, over time,
to give 58 samples used for pattern recognition and a peak table obtained. A new approach for finding
the optimum SVR parameters called differential evolution is described. SOMs are presented in the form
of two-dimensional maps. This paper shows the potential of using machine learning methods for pattern
recognition in analytical chemistry, particularly as applied to food chemistry and biology where trends
are likely to be non-linear.

© 2010 Elsevier B.V. All rights reserved.
. Introduction

Over the past few years, analytical chemistry has increasingly
een applied to problems in areas such as biology, medicine, food
cience and cultural studies [1–4]. Many applications involve using
oupled chromatography to monitor processes, typically GC–MS
gas chromatography–mass spectrometry). There has been a sub-
tantial literature on the preprocessing of GC–MS systems, for
xample peak detection and resolution, but much less emphasis on
he resultant pattern recognition. Typical approaches involve using
inear models for visualizing and interpreting data such as Principal
omponent Analysis (PCA) [5–8], Partial Least Squares (PLS) [9–13]
nd Soft Independent Modelling of Class Analogy (SIMCA) [14,15].
hese classical approaches are widely available in packaged soft-
are but also are computationally fast and effective when trends

n data are linear.
Over the past two decades, several approaches from the machine
earning community are becoming widespread in for example,
iology, and economics, but are less well established in analyti-
al chemistry. Two particularly widespread methods include those
ased on support vectors (SVs) [16–19] and Self-Organizing Maps

∗ Corresponding author.
E-mail address: r.g.brereton@bris.ac.uk (R.G. Brereton).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.06.051
(SOMs) [20–22]. These methods are more computationally inten-
sive than traditional approaches. But with the rapid increase in
computing power, approaches that were impractical and expen-
sive on resources a decade or more ago can now be implemented
easily on desktops and provide solutions within a short timescale.
An especial advantage of these approaches is that they can tackle
non-linear data. This is an important feature as it is likely that most
natural processes are non-linear. For example we do not expect
there to be a linear relationship between the amount of a volatile
generated during fungal degradation of food and degradation time
[23–28]. Another problem with most traditional approaches is that
they are based on least squares methods that reduce the mean
squared error between the data and a model: such methods can
have problems if there are outliers which is quite common in many
experimental studies. Whereas traditional approaches can, often
with some difficulties, be adapted to these situations, they often
become awkward and still have the same underlying assumptions.
SVR and SOM based approaches make no such assumptions. In addi-
tion SOMs include a wide variety of approaches for visualization
[12,22] and as such are much more flexible than principal compo-

nents.

In this paper, we demonstrate the applicability of such
approaches to a common problem – that of monitoring food
spoilage using GC–MS, studying the change in volatile organic com-
pounds (VOCs) monitored on the surface of the apples over time,
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Table 1
Distribution of samples according to sample type and level of spoilage.

Sample type Day

2 3 4 5 6 8 9 10

Inoculated
No. of samples 4 4 4 4 2 4 4 4
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Spoilage Healthy Healthy Healthy, 1 phase
Control

No. of samples 4 4 4
Spoilage Healthy Healthy Healthy

n a control group (that was not inoculated) and a treated group
inoculated with Penicillium expansum).

. Experimental

.1. Experimental procedure

Four granny smith apples (healthy, of diameters between 70 mm
nd 80 mm, and of the same colour) were selected. Each apple was
tored separately in a commercial bottle jar (1700 ml) at 22 ± 2 ◦C
uring the experiment with a sampling outlet sealed with a poly-
etrafluoroethylene (PTFE) silicone septum (20 mm). A cotton wool
lug was placed on the top of the bottle jars to ensure oxygen
upply for microbes. Before the experiment, apples were decon-
aminated by washing with propanol and distilled water. After air
rying, the apples were treated with low temperature steaming
60 ◦C for 20 min) for sterilization.

Penicillium expansum P1 strain, isolated from a spoiled plum,
as maintained and cultivated on MG (malt extract–glucose) agar

0.5% glucose), 1.7% malt extract (MERCK) and 2% agar (MERCK) at
5 ◦C. Conidia of 5–7 days old culture were used for inoculation
2.7 × 106 conidium/ml). The apples were inoculated with a four-
ailed needle to make sure that all apples were inoculated with an
qual amount of conidium. The needle was applied 12 times to each
pple resulting in 48 penetration points.

All sampling was via headspace solid phase microextraction
HS-SPME): SPME fibres (polydimethylsiloxane/divinylbenzene
PDMS/DVB, 65 �m)) were purchased from Supelco (Bellefonte,
A). All fibres were preconditioned according to the manufacturer’s
ecommendations (250 ◦C for 30 min) prior to their first use and
econditioned for 20 min in between each run to minimize carry-
ver effects. Extractions were performed at room temperature. The
bre is housed in a stainless-steel needle that allows penetration of
he membrane covering the sample vial and the septum in the gas
hromatography (GC) injection port. The SPME needle was passed
hrough the septum of the flask and the fibre was gently pushed out
f the needle to be exposed directly above the apples. After 25 min
f extraction, the fibre was retracted into the cannula and removed
rom the flask. This was followed by desorption in the GC injector
t 250 ◦C. A new fibre was used at the beginning of the analyses and
as not changed throughout the experiments.

All extractions were analyzed on a Finnigan GCQ GC–MS system
Finnigan Mat., USA). For separation, a Rxi-5 ms capillary column
Restek Corporation, Bellefonte, PA) (30 m, 0.25 mm i.d., 0.40 �m,
5% dimethyl-/5% diphenyl poly-siloxane) with helium (purity
9.999%, 0.4 ml/min constant flow) as carrier gas. The GC oven
rogram was chosen according to the following scheme: 40 ◦C for
min, 12 ◦C/min up to 235 ◦C. The desorption time and tempera-

ure were 20 min at 250 ◦C. The final temperature was maintained
or 7 min. In total, the GC was run for 26.25 min. The split was kept
losed in the beginning of the desorption and was opened after

min. For MS detection, electron ionization (EI) with 70 eV was
pplied and mass fragments were detected between 40 and 349
/z. The ion source and transfer line temperature were 180 ◦C and

75 ◦C, respectively. The column was not changed throughout the
xperiment.
phase 1 phase 2 phase 2 phase 2 phase

2 4 2 4
lthy Healthy Healthy Healthy Healthy

The extraction time was optimized in a separate experiment.
The extraction time, desorption time and desorption temperature
were evaluated based on a three-factorial experimental design.
The fibre conditions however were according to that reported
elsewhere [29]. The extraction temperature was fixed at room tem-
perature.

2.2. Samples description

In this paper, there are a total of 58 VOC sampled from control
and inoculated apples on 2nd, 3rd, 4th, 5th, 6th, 8th, 9th and 10th day.
The number of samples obtained on each day is shown in Table 1.
The apple samples were randomized each day for analysis using
GC–MS and were analyzed on the day of sampling to avoid prob-
lems of SPME storage. Blank runs of the SPME fibre were performed
before sample injection on each day.

The inoculated samples can be grouped according to the level
of spoilage based on visual observation and numbers of days since
the samples were inoculated. A sample is described as in the 1st

phase of spoilage when white spots are observed and it is labelled
as in the 2nd phase when white-green spots are formed. The control
samples remain healthy throughout the experiment.

2.3. Data analysis

The chromatograms in netcdf format were converted into mat
files using conversion tools available in the public domain [30]. The
scanning rate of the chromatograms is 0.20 s/scan with m/z ranging
from 40 to 349 resulting in GC–MS chromatograms of dimensions
7876 × 310.

The chromatograms are baseline corrected using asymmetric
least squares [31] and pre-aligned [32] prior to peak detection and
matching using our previously published method [33]; this results
in a peak table which is a matrix whose columns represent the peak
areas over all mass channels of all unique compounds detected and
whose rows represent chromatograms or samples. The next phase
is to remove all peaks that were present in 5 or less samples as
these may be artifacts of the peak detection or analytical techniques
and are not likely to be good markers, to give 200 unique com-
pounds which results in a peak table of dimensions 58 × 200. Three
of the 200 peaks are not detected in the inoculated samples. For
the purposes of SOM visualization of the inoculated samples and
SVR, a reduced peak table only those compounds detected in the
inoculated samples, of dimensions 30 × 197 was employed, since
variables that are not detected in a set of samples correspond to a
row of 0 s, which cannot be standardized as the standard deviation
is 0.

Further details of our methods for converting raw GC–MS data
to peak tables have been described elsewhere [33] and are not
repeated in this paper for brevity.
3. Multivariate analysis

3.1. Preprocessing

The peak table was square rooted (to reduce the influence of
large variables and reduce heteroscedastic noise), and row scaled
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ach variable or GC–MS peak, (c) the component plane of a variable number 1 and (

o constant sum (because the amount of gas sampled could not
e controlled). Note that there are several alternative approaches
or data preprocessing but we find that the method described in
his paper is effective in a wide variety of studies, so restrict the
iscussion in this paper to one common approach for the sake of
revity. For SOMs, the variables were additionally standardized in
rder to allow each variable to have equal influence. The motivation
ehind choosing these preprocessing methods has been described
lsewhere [12,34–36]. It is possible to compare many approaches
ut in this paper we are focusing on the SOMs and SVR reporting
nly one method for preparing the data.

.2. Self Organizing Maps

.2.1. Algorithm
Self Organizing Maps (SOMs) are an approach for visualizing

ata [12,20–22,37] and have advantages over the more traditional
pproach of Principal Component Analysis (PCA) [5–8] in various
ays. They are non-linear methods and it is likely that the rela-

ionship between spoilage and the concentration of volatiles is
ighly non-linear [23–28]. They use the full space for represen-

ation of data and there are many different ways for presentation
f the maps. SOMs have been less commonly employed in analyti-
al chemistry compared to traditional approaches partly due to the
ower availability of user friendly software including graphical pre-
entation and also because they are comparatively computationally
er the BMUs of the samples, (b) a series of M component planes corresponding to
component plane of a variable number 2.

intensive; however with the increasing powers of microprocessors
they are far more feasible for real time calculations.

Maps can be of various geometries. The most traditional is rect-
angular maps, which are composed of cells that are either square
or hexagonal in nature. In this paper, we use hexagonal cells (or
units). We train maps of dimensions 15 × 20 (P × Q) using 5000
iterations. The details of the algorithm is not included for brevity;
they are described elsewhere [12,20–22]. Briefly, it involves ini-
tialization of a map of dimensions P × Q consisting of K cells (300 in
this application) each cell being initially characterized by randomly
chosen weight vectors whose length equals that of the sample vec-
tors (in this case, 200 variables, M corresponding to the compounds
detected in the samples), adding an extra “hidden” dimension to the
map that is sometimes represented by component planes. A sam-
ple is randomly chosen to compare to the K weight vectors and is
used to find the cell that is characterized by the weight vector that
is most similar to the sample called the best matching unit (BMU).
This cell is then trained to resemble the randomly selected vector
more closely. The neighbors of the BMU are also updated. For a map
unit to be updated, its distance from the current BMU must be less
than a parameter called the neighborhood width, otherwise it is not

updated. The size of the neighborhood width reduces during train-
ing meaning that at later iterations the map is changed less. The
entire process is repeated each iteration. The number of iterations
far exceeds the number of samples, so all samples are chosen many
times to have an influence over the training. Once the map is fully
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rained, samples that resemble each other more closely are closer
o each other on the map. When samples are grouped into classes,
he trained map can be used to visualize which parts of the map
orrespond to each grouping in the data where an additional set
f variables corresponding to the class membership of each sam-
le is used for the visualization process. For unsupervised SOMs (as
eported in this paper), class membership information is not used
or the training, just to visualize the map. The class membership of
sample is characterized by an RGB (Red Green Blue) colour vector

hat represents a particular class. Each map unit therefore will have
hree additional weights corresponding to a trained RGB value that
an be used to shade the map unit for visualization purposes. This
llows all class regions to be displayed on the same map instead of
sing component planes which required a separate visualization of
ach class [12,22].

It is not necessary to restrict maps to rectangular geometry, and
common alternative is to represent samples on the surface of a

phere. Rectangular maps have the advantage that outlying sam-
les can be represented at the edges of the map and they can be
sed to represent other structures in the data for example spoilage
f samples as a function of time. However, they have the disad-
antage that some samples are always chosen to be in the centre
r the edges, and spherical representation does not have such a
estriction. In this paper, we focus on rectangular maps.

.2.2. Self-Organizing Map Discriminant Index
In addition to using SOMs for representing similarities between

amples, they can also be used to determine which variables (in this
ase, GC–MS peaks) are most responsible for separation. A SOM can
e represented either as the top layer which usually is illustrated
sing the BMUs of the samples, or as a series of hidden layers (com-
onent planes). Each layer consists of a cross section through the
orresponding weight vectors, so each variable (corresponding to
GC–MS peak) has its own component plane. Fig. 1 shows the rep-

esentation of a SOM for two classes (A and B) characterized by
variables. Each variable is represented by a single component

lane where the relationship between samples and variables can
e visualized – the darker the shading, the less important the vari-
ble is for describing the corresponding region of the SOM. Two
omponent planes are illustrated in Fig. 1(c) and (d) corresponding
o variable 1 which is characteristic of class B and variable 2 for
lass A. The concept of a SOMDI (Self-Organizing Map Discrimina-
ion Index) [37,38] has been defined to numerically describe how
ell the component plane of a variable corresponds to the SOM
hen BMUs are distinguished according to class. The SOM class
ap is transformed into two-layer maps, one layer representing an

in group” [12,39] and the other the “out group” for comparison
o the component planes of each variable. When there are more
han two groups, this comparison is performed separately for each
roup.

Previously, we have reported both the use of unsupervised SOMs
or ranking variables when there are just two groups in the data [38]
nd supervised SOMs for ranking and determining the number of
ignificant variables when there are more than two classes and sev-
ral factors that may influence the data [37]. In this paper, we use
nsupervised SOMs as the groups are well separated but extend
he approach by dividing the data into three groups corresponding
o the degree of spoilage with an indicator of significance attached.
total of 100 maps are trained, each differing according to the ran-

om start: note that each map will be different according to the
andom seeded weight vectors but we expect real trends to be sta-

le over all maps. Each map is in itself trained using 5000 iterations

nvolving in a total 500,000 iterations to result in a consensus view.
he BMUs in each map are characterized according to their class
or origins); when there are more than one class, one versus all
37] comparisons are performed for each of the classes separately.
 (2011) 1269–1278

If there are three classes, comparisons between class 1 and the rest,
class 2 and the rest and class 3 and the rest are performed on each of
the 100 maps. Variables are ranked according to the magnitude of
average SOMDI (�d̄) over 100 iterations. Which variables are signif-
icant are determined based on the Hodges Lehmann method [40].
If there are M variables, there will be M average SOMDI. The Hodges
Lehmann method defines Y (Y = M(M + 1)/2) Walsh averages, Wy.

Wy = mi + mj

2

where i ≥ j, i = 1 . . ., M, j = i . . .M, and m is the average SOMDI.
The 100(1 − ˛)% confidence interval of the null distribution is

determined from the ordered statistic of Walsh averages.
The compounds deemed to be significant were tentatively iden-

tified by comparing their mass spectra to the mass spectra of
reference compounds in a reference standard library (NIST MS
Search 2.0, National Institute of Standards and Technology).

3.3. Support Vector Regression

3.3.1. Algorithm
In this paper, we want to determine whether there is a relation-

ship between GC–MS peak areas and spoilage time. The relationship
is likely to be non-linear and in addition there may be outliers, for
example the peak detection algorithm may occasionally miss or
misassign peaks or there could be some biological or analytical fac-
tors that influence the occurrence of individual peaks. Sometimes
it is possible to detect outliers by visual inspection but if there are
200 peaks in 30 chromatograms, this would involve 6000 visual
checks which at 5 min per check would take 500 h and still may
not be perfect. Hence, when trying to relate 200 peaks to spoilage
time using a relationship that may be multilinear, traditional linear
least squares methods may not be the most suited. In this paper,
we report an alternative.

Support Vector Regression (SVR) is a method originating from
machine learning that can be employed for regression problems
[19,41–44]. Below we formulate SVR models by assuming that we
are trying to relate a GC–MS peak area, which we call x to spoilage
time, which we call c. We are trying to determine whether the
GC–MS area can be determined by the spoilage time i.e., to deter-
mine whether x is a function of c. Note that this application is called
classical calibration rather than inverse calibration. We use the x/c
notation in this paper, as it is conventional to refer to GC–MS peak
areas as the “x” block. In SVR, the input data vector is mapped onto
multi-dimensional feature space using kernel functions and a linear
model is constructed in this feature space.

We try to find a relationship as follows:

x̂ = (w · ˚(c)) + b

where w denotes is a weight vector, b is a constant (the bias),
x̂ is the predicted peak area, and ˚ is called a kernel that can
be used for non-linear models. For a linear model, ˚(c) = c. In
this paper, we employ a radial basis kernel [12,19] which can be
used to introduce non-linearity into the relationship, the value
of � being in units of the standard deviation of the overall data.
We use soft margin SVR (which is normal) characterized by a
penalty error C and a value for the width of the margins ε. The
main parameters are illustrated in Fig. 2. Samples on or outside
the margins are considered Support Vectors. The penalty error
C relates to the relative weight attached to samples outside the
margins; it controls the trade-off between the margin and the size

of the slack variables. In practice, a small value of C will increase
the training error and a large value will lead to behaviour similar
to that of hard margin SVs where all samples are on the correct
side of the margins. The penalty error C can take values between
0 and ∞. For ε which corresponds to the width of the margins, the
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alue influences the number of SVs used to construct the margins.
he larger the value of ε, the fewer the SVs resulting in a smoother
egression function but larger prediction error. For the kernel

idth �, a large value results in a linear function whereas a small

alue indicates a more complex one. Note that some combinations
f values of these three tuneable parameters are not valid, for
xample it may not be possible to produce a linear model (high �)
ombined with a high value of C and low ε (corresponding to tight

Fig. 3. The schematic of the differ
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boundaries and all samples within these boundaries) if the data are
curved.

3.3.2. Differential Evolution Algorithm for optimization
The quality of SVR models depends on an optimal setting of SVR

parameters: C, � and ε. There is relatively limited discussion in the
analytical chemistry literature about how to refine such calibra-
tion models. In this paper, Differential Evolution (DE) algorithm is
employed to determine the optimum SVR parameters [45,46]. The
DE algorithm is a simple evolutionary optimization algorithm first
reported by Storn and Price [47]. The algorithm begins to explore
the search space by randomly choosing a set of population with the
number of members, N, within defined search limits of the three
variables where the population members then experience muta-
tion, recombination and selection until the stopping criterion i.e., a
maximum number of iterations, G is met.

Fig. 3 summarises the DE algorithm. The algorithm begins by
defining the upper, U and lower limits, L for each parameter, d − [Ld,
Ud] where d = 1, . . ., D. D is the total number of parameters (D = 3)
and refers to C, s and epsilon, ε. Fig. 3(a) illustrates the search space
with the possible minimum. The search limit of C is set between 0.1
and 100 (and the value is optimized using a log scale). For �, the
value is varied between 0.2 and 5 (similarly on a log scale) and the
ε value involves the range of square root and row scaled GC–MS
peak areas (0.005–0.12 on a linear scale). Note that these limits
are quite liberal, designed to cover all possible ranges of the three
parameters.

A population, P (N × D where N = 20 and D = 3 corresponding
to the number of parameters in the model), is initialized by a set
of randomly generated sets of values of each parameter using a
uniform random number generator within the search limit of the

three variables (C, � and ε) where each variable is denoted by d
(d = 1, . . ., D) and the lower and upper limits L and U as described
above (Fig. 3(b)). The GC–MS peak areas, x are divided into
training, xtrain (20 samples) and test set, xtest (10 samples) where
the corresponding spoilage times are ctrain and ctest, respectively.

ential evolution algorithm.
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ig. 4. The trained SOMs of the control and inoculated samples using a rectangula
f the references to colour in this figure legend, the reader is referred to the web ve

he training set consists of two-third of the samples whilst the
est set consists of the remaining one-third of the samples and
s independent of the training set. The model is optimized in
utopredictive mode on the training set, and then the test set is
sed to determine how well the model performs. This distinction

s important, optimizing and testing the model on the test set may
esult in overfitting of the models. The split into test and training
ets is performed 100 times so that there are 100 separate models,
s described in Section 4.3. Below we describe the algorithm as
pplied to a single test and training set split.

For each of the N sets of parameters (or population members)
he root mean square error, RMSE for the training set is obtained as
ollows:

MSEn =

√√√√
[∑Z

z=1(xz,train − x̂nz,train)
]2

Z

here there are Z samples in the training set and x̂nz,train is the
rediction of the zth training set sample using the model using the
th set of parameters. A population member, pn (the target vector
f dimensions 1 × D (or 1 × 3 in our case)) and three mutually dif-
erent population members, pn1, pn2, pn3 (where n1, n2, n3 /= n)
re randomly selected (Fig. 3(c)). A mutation vector (of dimensions
× 3) u is created where u = pn3 + F(pn1 − pn2) and F, the differen-

iation constant, is set to 0.95. The scaled difference between two
andomly chosen members of the population, F(pn1 − pn2), is used
o define the direction and length of the search step for the third
opulation member pn3 (Fig. 3(d)).

In the next step, the algorithm evaluates each element of the
utation vector u in turn. If a randomly selected number is greater

han the crossover constant R (R is set to 0.5 in this paper), ud
eplaces p(n,d). The algorithm is designed to replace at least one of
he elements of pn with the corresponding element of u. The regen-
rated target vector is called the trial vector, v. The elements of the
rial vector are checked to ensure they are within the search limits
f the variables. If not, the element(s) exceeding the search limit are
egenerated, Ld + [(Ud − Ld)r] where r is a random number between
and 1 generated using a uniform distribution: note that it is rare

hat an element of the trial vector exceeds the experimental limit,

ut this procedure is introduced to avoid the occasional boundary
roblem. The RMSE obtained using v and pn are compared. If the
MSE calculated with v is greater than that obtained with pn, pn

s retained otherwise it is replaced by v. Note that in each of the
terations, a maximum of one of the N population vectors will be
represented according to the sample type and level of spoilage (For interpretation
of the article.).

changed. Fig. 3(e) shows a case where the RMSE of v less than the
RMSE of pn therefore pn is replaced with v.

The algorithm is repeated until the maximum number of itera-
tions, G (=1000 in this paper) is reached or the difference between
the minimum RMSE and the second minimum RMSE value within
the N members of the population is less than 1 × 10−5. Note that the
value 1 × 10−5 relates to the range of peak areas employed in this
study (in practice it is a small number relative to the experimental
data) and in other applications may be changed according to the
scale of the raw data. The population member with the minimum
RMSE within the population is considered the best combination.

When the data are divided into test and training sets, the RMSEP
can then be calculated on the test set using the optimized param-
eters of the training set for each of the 100 test/training set splits

as follows, RMSEP =
√∑T

t=1(xt,test − x̂t,test)
2/T , where there are T

samples in the test set.
Note that this algorithm can also be used in autopredictive mode

in which case the optimized RMSE is employed as a measure of
predictive power.

In this paper, we illustrate the application of SVR for prediction
using non-linear models. We investigate the use of regression mod-
els for peak areas over time during spoilage time. It is anticipated
that there will be definable trends and changes in concentrations
of volatiles as there is decomposition of the fruit. It is most unlikely
that these trends will be a linear function of time; in addition as in
many such experiments there may be occasional outlying sample
for a variety of common experimental reasons including problems
with GC–MS peaks overlapping and subsequent quantification by
peak deconvolution algorithms.

3.3.3. Partial Least Squares regression
In this paper, we also use Partial Least Squares regression (PLSR)

to predict the row scaled root square area of styrene. The prediction
is performed on 100 identical training/test splits of SVR using 1 PLS
component. The algorithm is described in detail elsewhere [48,49].

4. Results and discussions

4.1. Exploratory analysis
The trained SOMs clearly indicate that samples are visually dis-
tinguishable according to sample types and level of spoilage as
illustrated in Fig. 4 using a rectangular grid. We can also train the
inoculated samples to examine the level of spoilage according to
observation of fruit and days. The SOM visualization map demon-
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ig. 5. The trained SOMs of the inoculated samples according to level of spoilage: (a
nits are labelled according to the number of days the samples are inoculated. (For
he web version of the article.)

trates that the inoculated samples are well clustered according to
ifferent phases of spoilage. In terms of days, the visualization map

llustrates that samples from 2nd and 3rd day are likely to be healthy.
hen the inoculated samples have reached 4th, 5th and 6th day, the

amples are characterized by white spots (1st phase spoilage) and
n 8th, 9th and 10th day, white-green spots (2nd phase spoilage).
he visualization maps of the inoculated samples with the BMU
ndicated according to phases of spoilage and days are illustrated
n Fig. 5. The SOM visualization has been very useful as the apple
amples can be differentiated according to control and inoculation
onsistent with visual inspection, and the spoilage time i.e., how
any days have the samples been exposed to fungal degradation,

an also be visualized in the maps.
At the back of the map are 200 component planes, each corre-

ponding to a single detectable GC–MS peak as illustrated in Fig. 1.
he distribution of samples in the map can be compared to the
istribution of intensity in the component planes, as described in
ection 3.2.2 and discussed below, to determine which variables
re significant.

.2. Significant variables for inoculation

The variables that appear to have a significant difference
etween the control and the inoculated samples are determined
sing SOMDI with an unsupervised SOM. Styrene and 1-methoxy-
-methylbenzene are found to be important for describing the
poiled samples as reported elsewhere [50–53]. From other stud-
es, styrene is well recognized as a compound found in apple
poilage due to P. expansum [50,51]. This compound is charac-
erized as weakly toxic; the US EPA has described styrene as a
uspected carcinogen and a suspected toxin to the gastrointestinal,
idney, and respiratory systems. Generally, the significant vari-
bles either accumulate or decrease in concentration over time
fter samples are inoculated; the distributions of the significant
ompounds determined using the methods of Section 3.2 in con-
rol and inoculated samples from 2nd to 10th day are illustrated

n Fig. 6, together with their identities as determined using man-
al interpretation of mass spectra and their aligned RT (this varies
lightly according to chromatogram but we have discussed about
ur peak detection and alignment method elsewhere [33]). These
ompounds are in agreement with those reported elsewhere. Pen-
est matching units are labelled according to spoilage level and (b) the bst matching
pretation of the references to colour in this figure legend, the reader is referred to

tanoic acid ethyl ester [54] and hexyl propanoate [55] are found
to reduce whilst methyl 3,3-dimethylbutanoate, ethyl hexanoate,
benzene-1-methoxy-3-methyl and phenyl acetic acid [51] increase
in the inoculated samples over time. Appearance and disappear-
ance of the variables are expected as the fungi grow and metabolize.
For the control samples, the concentrations of the significant com-
pounds appear to be quite consistent throughout the experimental
period suggesting the reproducibility of the sampling and instru-
mentation.

The component planes of the significant variables have clus-
tering similar to the class map in Fig. 4 with the intensity of the
map units indicates the presence/absence of the variable in a cor-
responding group. The darker the shading, the less important the
variable for describing the group. This is illustrated by the compo-
nent planes of 2 significant variables at RT 6.45 min and 7.27 min
(Fig. 7) where the former compound is predominantly found in the
inoculated samples and the later is more likely to be present in
the control samples. Note that some inoculated samples remain
healthy and are comparable to the control samples.

4.3. Prediction

In SVR, optimization of three parameters (C, � and ε) is impor-
tant. The parameter ε regulates the radius of the margin around the
regression function; a large value will result in a smoother regres-
sion function but the model may not be applicable. The parameter C
however, determines the trade-off between the smoothness of the
regression function and the amount up to which deviation larger
than ε are tolerated.

The optimization of SVR parameters is performed using 100
training/test splits. The results suggested that the parameters are
selected over a range within the boundary constraints. Fig. 8 illus-
trates the optimized values C, � and ε over 100 iterations with the
dashed lines indicating the parameters at 25%, 50%, 75% and 95%
quantile of the range.

Fig. 9 shows the SVR solutions for prediction of styrene using

the optimized SVR parameters over 100 training/test splits. It is
shown that the models are non-linear and the samples could be
modelled appropriately with the selected parameters; the mean
RMSE is 0.0109 in units of square root and row scaled peak area
corresponding to 17.68% of the mean of the square root row scaled



1276 S.S. Fong et al. / Talanta 83 (2011) 1269–1278

Fig. 6. The distribution of significant compounds in control and inoculated samples from 2nd to 10th day using the row scaled square root peak area.

Fig. 7. The component planes of two significant variables at RT 6.45 min and 7.27 min.

Fig. 8. The SVR parameters chosen for prediction of styrene over 100 training/test splits, horizontal lines illustrating the 95%, 75%, 50% and 25% quantiles of the range.
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Fig. 9. The PLSR and SVR solutions for prediction of styrene over 100 iterations of training/test splits.
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ndicated with circles, the best fit straight line in red and the margins in green. Tes
olour in this figure legend, the reader is referred to the web version of the article.)

C–MS peak area for styrene. The corresponding values of RMSEP
re 0.0158 corresponding to 25.58%.

The prediction can be performed on the identical training/test
plits using PLSR (using one PLS component) to illustrate the dif-
erence between SVR and a linear method. For PLSR models, in
omparison the RMSEP obtained is 0.0205 corresponding to an
rror of 33.17% which is greater than that achieved with SVR.

Fig. 10 illustrates the autopredictive and a training set model
or the optimal values of the three tuneable parameters obtained
s discussed in Section 3.3.2. Apart from being able to accommodate
he non-linearity of the data, the fit of the model can be adjusted
ccordingly using the three tuneable parameters.

. Conclusion

We can see in this paper that modern approaches based on
achine learning are readily applicable to mining complex chro-
atographic datasets, such as the one illustrated relating to

ruit spoilage over time. Some adaptations have been described,
ncluding a method for optimizing the SVR parameters. SOMs are
articularly powerful approaches for visualizing analytical chemi-
al data. It is anticipated that in the next few years both SVR and
OM based methods will have a major role to play in analytical
hemistry as the application areas and chromatographic or spec-
roscopic datasets become even more complex and so harder to
nterpret by eyeballing because of the volume of data, but com-

uters become more powerful and so able to perform calculations
apidly on a desktop at speeds inconceivable one or two decades
go.

In addition to illustrating the applicability of such approaches
o analytical data, we have also described a novel approach for
est set split. In all cases parameters are optimized as described in the text. SVs are
amples are indicated in red as appropriate. (For interpretation of the references to

optimizing SVR parameters, and used computationally intense
enhancements such as splitting the data 100 times into test and
training sets in order to produce consensus models. These addi-
tional adaptations of SVR are important in order to apply the
available methods to analytical chemistry.

In this paper, SOMs are demonstrated on a relatively simple
dataset containing two groups (control and inoculated samples)
one of which is further characterized by level of spoilage i.e.,
healthy, 1st phase and 2nd phase for visualization and variable
selection. Since the number of groups is small enough and the
data structure is clearly distinguishable, unsupervised SOMs are
adequate even for variable selection. When multiclass data with
greater complexity is involved, SOMs can be extended to a super-
vised approach where component planes corresponding to class
membership are included for training [37] so the ideas in this paper
can be extended to more complex datasets.
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